Integration By Parts

\[\int u\,dv = uv - \int v\,du \]

Guidelines

1. Try letting \(dv \) be the most complicated part of the integrand that fits a basic integration rule. Then \(u \) will be the remaining factor(s).

2. Try letting \(u \) be the portion of the integrand whose derivative is a function simpler than \(u \). Then \(dv \) will be the remaining factor(s).

Note that \(dv \) always includes the \(dx \) of the original integrand.

For \(\int x^n e^{ax} \, dx, \int x^n \sin(ax) \, dx, \int x^n \cos(ax) \, dx \) let \(u = x^n \)
\(dv = e^{ax} \, dx, \sin(ax) \, dx, \cos(ax) \, dx \)

For \(\int x^n \ln x \, dx, \int x^n \arcsin(ax) \, dx, \int x^n \arctan(ax) \, dx \) let \(u = \ln x, \arcsin(ax), \arctan(ax) \)
\(dv = x^n \, dx \)

For \(\int e^{ax} \sin(bx) \, dx, \int e^{ax} \cos(bx) \, dx \) let \(u = \sin(bx), \cos(bx) \)
\(dv = e^{ax} \, dx \)

The tabular method works well when \(u = x^n \)
Trig Integrals

Useful Identities:

\[\int \sin^m x \cos^n x \, dx \quad \sin^2 x + \cos^2 x = 1 \]
\[\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2} \]

Guidelines

1. If \(m \) is odd and positive, let \(du = \sin x \, dx \). Convert the remaining sines into cosines using \(\sin^2 x = 1 - \cos^2 x \).
2. If \(n \) is odd and positive, let \(du = \cos x \, dx \). Convert the remaining cosines into sines using \(\cos^2 x = 2 - \sin^2 x \).
3. If \(m \) and \(n \) are even and positive, make repeated substitutions to create odd powers of cosines. Then see \#2.

\[\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2} \]

\[\int \sec^m x \tan^n x \, dx \quad \text{Useful identity:} \quad \sec^2 x = 1 + \tan^2 x \]

Guidelines

1. If \(m \) is even and positive, let \(du = \sec^2 x \, dx \). Convert the remaining secants into tangents using \(\sec^2 x = 1 + \tan^2 x \).
2. If \(n \) is odd and positive, let \(du = \sec x \tan x \, dx \). Convert the remaining tangents into secants using \(\tan^2 x = \sec^2 x - 1 \).
3. If \(m = 0 \) and \(n \) is even and positive, factor out a \(\sec^2 x \) and substitute \(\sec^2 x = 1 + \tan^2 x \). Expand the remaining expression and repeat as needed.
4. If \(n = 0 \) and \(m \) is odd and positive, use integration by parts. \(dv = \sec^2 x \, dx \)
5. If none of the above, try converting to sines and cosines.

When sine and cosine have different angles, make one of the following substitutions:

- \(\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)] \)
- \(\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)] \)
- \(\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)] \)
Trig Substitution

Look for radicals of form $\sqrt{a^2-u^2}$, $\sqrt{a^2+u^2}$, $\sqrt{u^2-a^2}$

1. For integrals with $\sqrt{a^2-u^2}$, let $u = a \sin \theta$.
 Then $\sqrt{a^2-u^2} = a \cos \theta$, where $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$

2. For integrals with $\sqrt{a^2+u^2}$, let $u = a \tan \theta$.
 Then $\sqrt{a^2+u^2} = a \sec \theta$, where $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$

3. For integrals with $\sqrt{u^2-a^2}$, let $u = a \sec \theta$.
 Then $\sqrt{u^2-a^2} = a \tan \theta$, where $0 \leq \theta \leq \frac{\pi}{2}$

Steps for Partial Fractions

1. Improper Fractions: If the degree of $N(x)$ is greater than the degree of $D(x)$, then $\frac{N(x)}{D(x)}$ is an improper fraction. Divide $N(x)$ by $D(x)$ to get $\frac{N(x)}{D(x)} = \text{polynomial} + \frac{N_1(x)}{D(x)}$

2. Factor Denominator: Completely factor the denominator into factors of the form $(px+q)^m$ and $(ax^2+bx+c)^n$ where ax^2+bx+c is irreducible.

3. Linear Factors: For each factor of the form $(px+q)^m$, the sum of m partial fractions is required.
 \[\frac{A_1}{px+q} + \frac{A_2}{(px+q)^2} + \ldots + \frac{A_m}{(px+q)^m} \]
 derivative of a line is a constant so a constant in each numerator

4. Quadratic Factors: For each factor of the form $(ax^2+bx+c)^n$, the sum of n partial fractions is required.
 \[\frac{A_{1x+B_1}}{ax^2+bx+c} + \frac{A_{2x+B_2}}{(ax^2+bx+c)^2} + \ldots + \frac{A_{nx+B_n}}{(ax^2+bx+c)^n} \]
 derivative of a quadratic is a line so a line in each numerator
To solve for constants:
1. Multiply the entire equation by the common denominator.
2. Plug in convenient values of \(x \), or the zeros of each linear factor, to solve for as many constants as you can.
3. Expanding each side and setting a polynomial = polynomial. Set the coefficients of like powers equal to create a system of equations. Solve for remaining constants.

Improper Integrals

1. If \(f \) is continuous on the interval \([a, \infty)\), then
 \[
 \int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx
 \]

2. If \(f \) is continuous on the interval \((-\infty, b]\), then
 \[
 \int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx
 \]

3. If \(f \) is continuous on the interval \((-\infty, \infty)\), then
 \[
 \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx \quad \text{where } c \text{ is any real number.}
 \]

 For 1 and 2: the integral converges if the limit exists

 the integral diverges if the limit does not exists

 For 3: the integral on the left diverges if either of the integrals on the right diverges.

L’Hôpital’s Rule: If \(\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ or } \frac{\infty}{\infty} \), then
\[
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
\]
for any \(c \) in \((-\infty, \infty)\). Simplify and repeated as needed.