Topics Covered

Section 4.1: Angles and Their Measure
Section 4.2: Trigonometric Functions Defined on the Unit Circle
Section 4.3: Right Triangle Geometry
Section 4.4: Trigonometric Functions of Any Angle
Section 4.5: Graphs of Sine and Cosine Functions
Section 4.7: Inverse Trigonometric Functions
Section 5.1 Fundamental Trigonometric Identities
Section 5.2 Sum and Difference Formulas

What's in this review?

1. Review Packet
 The packet is filled in along with the instructor during the review. The link to the review video can be found at either of the web addresses at the top of the page along with a link to download this packet.

2. Practice Problems
 The problems are meant for you to try at home after you have watched the review. The answers are provided on the last page. There are tutors in Milledge Hall and Study Hall to help you if needed.
Section 4.1: Angles and Their Measure

Trigonometric Functions of Acute Angles
An acute angle is an angle with a measure satisfying:
\[0° \leq \theta < 90° \]
\[0 \leq \theta < \frac{\pi}{2} \]

An obtuse angle is an angle with a measure satisfying:
\[90° < \theta \]
\[\frac{\pi}{2} < \theta \]

A right triangle is a triangle with one 90° angle.

Angles are complementary when their sum adds up to 90°.
Angles are supplementary when their sum adds up to 180°.

Radian Measure
1 radian is the angle measure of the arc of a circle where \(s = r \). \(s = \text{arc length}, r = \text{radius} \)
\[180° = \pi \text{ radians} \]

To convert from radians to degrees:
\[\theta^\circ \frac{\pi}{180^\circ} = \theta \text{ (in radians)} \]

To convert from degrees to radians:
\[\theta \frac{180^\circ}{\pi} = \theta^\circ \]
\[\pi \approx 3.14 \text{ radians} \]

Radian Measure and Geometry
\(s = r\theta \) where \(s = \text{arc length}, \theta = \text{angle} \) (in radians) and \(r = \text{radius} \)

Area of a sector of a circle: There are three possible ways to measure depending on which two variables you know. \(\theta \) MUST BE IN RADIANS!!!
\[A = \frac{1}{2} r^2 \theta = \frac{1}{2} rs = \frac{s^2}{2\theta} \]

Angular Speed
\[\omega = \frac{\theta}{t} \]

Linear Speed
\[v = \frac{d}{t} \]
\[v = r\omega \]
Examples
1. Kim’s donut tasting party was so successful that it propelled her YouTube hits to such a level that she was invited to compete in a bake-off competition on the Food Network. Kim won first prize and was awarded The Golden Donut. She was so excited when she won that she dropped it and it rolled 100m before she could catch it. If the diameter of The Golden Donut trophy is 0.1m, answer the following:

(a) Through what total angle did The Golden Donut rotate in radians?

(b) Through what total angle did The Golden Donut rotate in degrees?

(c) How many revolutions did The Golden Donut rotate? (Round your answer to 1 decimal place)

2. A circular sector with central angle 150° has an area of 20 square units. Determine the radius of the circle.
Section 4.2: Trigonometric Functions Defined on the Unit Circle

The Unit Circle
The unit circle consists of all points \((x, y)\) that satisfy the equation \(x^2 + y^2 = 1\) which is a circle of radius 1. See the back page for a blank unit circle.

Examples
3. In which quadrants to \(\tan \theta\) and \(\sin \theta\) have the same sign?

4. If \(\cos x = \frac{\sqrt{2}}{2}\), find \(\sin x\), \(\cos(-x)\) and \(\tan x\).

5. Assume \(6 \sin^2 x - 7 \cos^2 x = 1\). Find the value of \(\csc^2 x\).

6. Give the location(s) on the unit circle where the following quantities are undefined on the interval \([0, 2\pi]\).
 (a) \(\sec \theta\)
 (b) \(\csc \theta\)
 (c) \(\tan \theta\)
 (d) \(\cot \theta\)
Section 4.3: Right Triangle Geometry

The following 6 Trig functions only apply to right triangles.

\[
\cos \theta = \frac{adj}{hyp} \\
\sin \theta = \frac{opp}{hyp} \\
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{opp}{adj} \\
\sec \theta = \frac{1}{\cos \theta} = \frac{hyp}{adj} \\
\csc \theta = \frac{1}{\sec \theta} = \frac{hyp}{opp} \\
\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \frac{adj}{opp}
\]

Examples

7. Assume \(\theta \) lies in quadrant 3 and the terminal side of \(\theta \) is perpendicular to the line \(y = -x + 2 \). Determine \(\sin \theta \) and \(\sec \theta \).
8. Let point $A(-3, -6)$ be the endpoint of the terminal side of an angle θ in standard position. Compute the following:

(a) \[\tan \theta = \]

\[\sec \theta = \]

Let point $B(4, -7)$ be the endpoint of the terminal side of an angle α in standard position. Compute the following:

(b) \[\cot \alpha = \]

\[\sin \alpha = \]

9. Find all possible values of $\sin x$ in the interval $[0, 2\pi]$ when $\cos x = 5/7$. There may be more than one right answer.
10. The arc in the graph is a section of the unit circle centered at (0,0). Find the lengths of CD and OD in terms of x.

\[\theta \]

\[\theta = \frac{11\pi}{6} \]

\[\theta = 317^\circ \]

Section 4.4: Trigonometric Functions of Any Angle

Trigonometric Functions of Angles

Positive angles are measured from the positive x-axis rotating counterclockwise.

Negative angles are measured from the positive x-axis rotating clockwise.

Reference Angle is the acute angle ($\theta \leq \pi/2$) formed by the terminal side and the horizontal axis.

Coterminal angles are angles that share the same terminal side.

Examples

11. Find the reference angle for the following:

(a) \[\theta = \frac{11\pi}{6} \]

(b) \[\theta = 317^\circ \]
12. Find all the exact values of \(x \) that satisfy \(\tan x = 1 \) on the interval \([-2\pi, 2\pi]\). Show your work or no credit will be awarded. (Hint: A diagram counts as work)

13. Devin was so upset about Florida’s crushing loss to Georgia this season that he climbed a tree after the game and wouldn’t come down. His friends Erik and Scotti need a ladder to retrieve him but don’t know how tall the tree is. If Erik is standing to the left of the tree with an angle of elevation of 21° and his distance to the top of the tree is 42m. Scotti is standing to the right of the tree with an angle of elevation of 47°. Answer the following.

 (a) How long does the ladder need to be to reach Devin if their plan is to climb straight up the tree?

 (b) How far apart are Erik and Scotti from each other?
Section 4.5: Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions
Sketch the graphs of the 6 trigonometric functions in the space provided.

\[
\sin x
\]

\[
\cos x
\]

General Wave Properties
Waves oscillate, or bounce, between their maximum and minimum values.

\[
y = A \sin[B(x - C)] + D
\]
\[
y = A \cos[B(x - C)] + D
\]

- \(A = \text{amplitude} = \frac{\text{max} - \text{min}}{2} \)
- \(B = \text{frequency} = \frac{2\pi}{T}, T = \text{time period} \)
- \(C = \text{phase shift} = \text{horizontal shift} \)
- \(D = \text{vertical shift} = \frac{\text{max} + \text{min}}{2} \)
Examples
14. A sine wave oscillates between 6 and 10, has a period of 4π and is shifted left π.
 (a) Write the equation of the wave in the form $y = a \sin(bx + c) + d$.

(b) Sketch the wave you found in part (a) on the interval $[-2\pi, 2\pi]$. Clearly label the amplitude, period, y-intercept and scale the x-axis by increments of $\frac{\pi}{2}$.
15. The graph below is a graph of a function \(f(x) = a \cos(2x + c) \). If \(a > 0 \) and \(c > 0 \), determine the values of \(a \) and \(c \) that would produce the graph below.
Section 4.7: Inverse Trigonometric Functions

Inverse Trig Functions and their Graphs
Sketch the graphs of the inverse trig functions in the space provided. State their respective domain and range.

\(\sin^{-1}(x) \quad \cos^{-1}(x) \)

\[
\begin{align*}
\text{D:} & \quad \text{D:} \\
\text{R:} & \quad \text{R:}
\end{align*}
\]

\(\tan^{-1}(x) \)

\[
\begin{align*}
\text{D:} & \\
\text{R:}
\end{align*}
\]

Inverse cosine \(\text{arccos} \) the unique number in the interval \([0,\pi]\) whose cosine is \(x \).
Inverse sine \(\text{arcsin} \) the unique number in the interval \([-\pi/2,\pi/2]\) whose sine is \(x \).
Inverse tan \(\text{arctan} \) the unique number in the interval \([-\pi/2,\pi/2]\) whose tangent is \(x \).

Properties of Inverse Trig Functions

\[
\begin{align*}
\sin(\sin^{-1} x) &= x & \text{For every } x \text{ in } [-1,1] \\
\sin^{-1}(\sin x) &= x & \text{For every } x \text{ in } [-\pi/2,\pi/2] \\
\cos(\cos^{-1} x) &= x & \text{For every } x \text{ in } [-1,1] \\
\cos^{-1}(\cos x) &= x & \text{For every } x \text{ in } [0,\pi] \\
\tan(\tan^{-1} x) &= x & \text{For all reals } (-\infty, \infty) \\
\tan^{-1}(\tan x) &= x & \text{For every } x \text{ in } [-\pi/2, \pi/2]
\end{align*}
\]
Examples
16. Find the exact value of the following:
 (a) $\sin \left(\arccos \left(-\frac{2}{3} \right) \right)$

 (b) $\arcsin \left(\sin \left(\frac{5\pi}{6} \right) \right)$
Sections 5.1 & 5.2: Trig Identities

Pythagorean identities
\[
\sin^2 \theta + \cos^2 \theta = 1 \quad \tan^2 \theta + 1 = \sec^2 \theta \quad 1 + \cot^2 \theta = \csc^2 \theta
\]

Opposite Angle Identities
\[
\cos(-\theta) = \cos \theta \quad \sin(-\theta) = -\sin \theta \quad \tan(-\theta) = -\tan(\theta)
\]

Cosine is an even function Sine is an odd function Tangent is an odd function

Reciprocal Identities
\[
csc x = \frac{1}{\sin x} \quad \sec x = \frac{1}{\cos x} \quad \cot x = \frac{1}{\tan x}
\]
\[
\sin x = \frac{1}{\csc x} \quad \cos x = \frac{1}{\sec x} \quad \tan x = \frac{1}{\cot x}
\]

Quotient Identities
\[
\tan x = \frac{\sin x}{\cos x} \quad \cot x = \frac{\cos x}{\sin x}
\]

Quotient Identities
\[
\sin(u + v) = \sin u \cos v + \cos u \sin v \quad \sin(u - v) = \sin u \cos v - \cos u \sin v
\]
\[
\cos(u + v) = \cos u \cos v - \sin u \sin v \quad \cos(u - v) = \cos u \cos v + \sin u \sin v
\]
\[
\tan(u + v) = \frac{\tan u + \tan v}{1 - \tan u \tan v} \quad \tan(u - v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}
\]

Examples
17. Verify that the following expression is an identity.
\[
\frac{1}{1 - \sin x} + \frac{1}{1 + \sin x} = 2 \sec^2 x
\]
18. Verify the following identity
\[
\frac{\sin \theta}{\csc \theta - \cot \theta} 1 + \cos \theta
\]

19. Verify the following identity
\[
\sin \left(x + \frac{\pi}{4} \right) + \sin \left(x - \frac{\pi}{4} \right) = \sqrt{2} \sin x
\]

20. Verify the following identity
\[
\cos \left(\frac{\pi}{2} + x \right) = -\sin x
\]
The Unit Circle